Главная » Олимпиада
8.1. У Васи в кошельке лежало немного денег. Вася положил в кошелек еще 49 рублей,

и сумма денег в кошельке увеличилась в 99 раз. Сколь денег стало у Васи в кошельке?

8.2. Имеется 30 бревен длинами 3 и 4 м, суммарная длина которых равна 100 м. Каким

числом расп ... Читать дальше »
Категория: Олимпиада | Просмотров: 417 |

1.(2б) Объясните, почему 2,6·(26n -1) – целое число при любом натуральном n.

Решение.

Число 26n всегда оканчивается на 6, а поэтому 26n -1 оканчивается на 5;

Заметим, что при умножении 2,6, на целое число, оканчивающееся на 5, получается целое число.

... Читать дальше »
Категория: Олимпиада | Просмотров: 485 |

Задача 1. Ответ: 25 рублей. Решение: Одолженные и возвращенные соседу деньги можно не принимать во внимание. Так как покупатель расплатился фальшивыми деньгами, то продавец понес убыток 25 рублей.

Задача 2. Ответ:82°.Решение: одно из возможных обоснований:

1) Рассмотрим тре ... Читать дальше »
Категория: Олимпиада | Просмотров: 347 |

Все трехзначные числа записаны в ряд: 100 101 102 … 998 999. Сколько раз в этом ряду после двойки идет нуль?

По определению, n ! = 1 · 2 · 3 · … · n . Какой сомножитель нужно вычеркнуть из произведения 1! · 2! · 3! · … · 20!, чтобы оставшееся произведение стало квадратом некоторого нату ... Читать дальше »
Категория: Олимпиада | Просмотров: 354 |

Олимпиада по математике 9 класс.

Сократить дробь: .

(2б)

Задача Безу. Некто купил лошадь и спустя некоторое время продал её за 24 пистоля. При этой продаже он теряет столько процентов, сколько стоила его лошадь. Спрашивается, за какую сумму он её купил?
< ... Читать дальше »
Категория: Олимпиада | Просмотров: 356 |

Задача 1.

По беговой дорожке одновременно стартовали два спортсмена. Первый, имея большую скорость, добежал до конца дорожки, повернул обратно, встретил второго через 5 мин после начала бега и добежал до старта на 1 мин 20 с позже, чем второй до конца дорожки. Найдите скорость первого с ... Читать дальше »
Категория: Олимпиада | Просмотров: 407 |

№1

Решите уравнение:

х6 – 2х5 – 2х4 + 6х3 – 7х2 + 8х – 4 = 0

10 баллов

№2

Задача. В зрительном зале клуба было 320 мест. После ремонта число мест в каждом ряду увеличилось на 4 и, кроме того, в зале добавился ещё один ряд. Сколько стал ... Читать дальше »
Категория: Олимпиада | Просмотров: 349 |

1. Придумайте такое нецелое число, что 15% и 33% от него – целые числа.

Ответ. Например, 100/3.

2. Туристам-байдарочникам нужны восемь одинаковых «сидушек» – мягких ковриков длиной не менее 35 см и шириной не менее 20 см. В спортивном магазине продаются большие коврики длин ... Читать дальше »
Категория: Олимпиада | Просмотров: 408 |

Сравните числа и 10. (7баллов)

Известно, что и ; ; ; и т.д. (рис. 1). Тогда длина отрезка равна…(7баллов)

Витя задумал два числа. Их сумма равна их произведению и равна их частному. Какие числа задумал Витя? (7баллов)
Решить неравенство: .(7баллов)
Стрелок дес ... Читать дальше »
Категория: Олимпиада | Просмотров: 402 |

Школьный этап Всероссийской олимпиады школьников

по математике для учащихся 10 классов, 2012-2013 уч.г.

В одном магазине молоко подешевело на 40%, а в другом – сначала на 20%, а затем еще на 25%. Первоначальная цена на молоко в каждом из магазинов была одна и та же. Где мол ... Читать дальше »
Категория: Олимпиада | Просмотров: 478 |

Решите уравнение

В ответе укажите целый корень. (2б)

Решение:



Ответ:1.

Решите систему уравнений

(2б)

Решение:

Пусть , xy=b, тогда



Имеем

Ответ: (3;1), (1;3). ... Читать дальше »
Категория: Олимпиада | Просмотров: 366 |

10.1. Садовод-исследователь в течение июля и августа наблюдал за своей яблоней. За

каждый месяц каждое яблоко увеличивает вес в 1,5 раза, но при этом 20% хороших яблок

становятся червивыми. Как и на сколько процентов изменился общий вес хороших яблок в

конце ав ... Читать дальше »
Категория: Олимпиада | Просмотров: 418 |

Докажите, что для любых чисел a, b, c, принадлежащих отрезку [0, 1], выполните неравенство

(a + b + c + 1)2 4(a2 + b2 + c2).

Решить систему уравнений

В окружность с центром О вписан четырехугольник со взаимно перпендикулярными диагоналями. Докажите, что расстоя ... Читать дальше »
Категория: Олимпиада | Просмотров: 378 |

1.(2б) Найти все такие двузначные числа A, для каждого из которых два из следующих четырех утверждений верны, а два -- неверны:
а) A делится на 5,
б) A делится на 23,
в) A+7 есть точный квадрат,
г) A-10 есть точный квадрат.

Решение

Нужно перебрат ... Читать дальше »
Категория: Олимпиада | Просмотров: 490 |

№1

Решить неравенство:

5|х + 4| < 25|х|

15 баллов

№2

Упростить выражение:



10 баллов

№3

При каких натуральных n найдутся такие положительные рациональные, но не целые числа a и b, что ... Читать дальше »
Категория: Олимпиада | Просмотров: 411 |

« 1 2 ... 8 9 10 11 12 ... 25 26 »