Главная » 2016 » Январь » 18 » Олимпиада по математике 11 класс с ответами
13:24
Олимпиада по математике 11 класс с ответами
Школьный этап Всероссийской олимпиады школьников

по математике для учащихся 11 классов, 2012-2013 уч.г.

1. В одном магазине молоко подешевело на 40%, а в другом – сначала на 20%, а затем еще на 25%. Первоначальная цена на молоко в каждом из магазинов была одна и та же. Где молоко стало стоить дешевле?

2. При сложении двух целых чисел Коля поставил лишний ноль на конце одного из слагаемых и получил в сумме 777777 вместо 111111. Какие числа он складывал?

3. На рисунке изображена «змейка» из одинаковых кубиков. Какое минимальное число кубиков потребуется, чтобы замкнуть ее?

4. Постройте график функции и определите, при каких значениях к прямая у = к х не будет иметь с графиком ни одной общей точки.

5. Высоты остроугольного треугольника АВС, проведенные из вершин В и С, продолжили до пересечения с описанной окружностью в точках В1 и С1. Оказалось, что отрезок В1С1 проходит через центр описанной окружности. Найдите угол ВАС.

Школьный этап Всероссийской олимпиады школьников

по математике для учащихся 11 классов, 2012-2013 уч.г.

1. В одном магазине молоко подешевело на 40%, а в другом – сначала на 20%, а затем еще на 25%. Первоначальная цена на молоко в каждом из магазинов была одна и та же. Где молоко стало стоить дешевле?

2. При сложении двух целых чисел Коля поставил лишний ноль на конце одного из слагаемых и получил в сумме 777777 вместо 111111. Какие числа он складывал?

3. На рисунке изображена «змейка» из одинаковых кубиков. Какое минимальное число кубиков потребуется, чтобы замкнуть ее?

4. Постройте график функции и определите, при каких значениях к прямая у = к х не будет иметь с графиком ни одной общей точки.

5. Высоты остроугольного треугольника АВС, проведенные из вершин В и С, продолжили до пересечения с описанной окружностью в точках В1 и С1. Оказалось, что отрезок В1С1 проходит через центр описанной окружности. Найдите угол ВАС.

Ключи, критерии оценивания олимпиадных заданий

школьного этапа по математике

11 класс

Ответ: одинаково

Решение: Пусть х рублей первоначальная цена молока.

В первом магазине цена уменьшилась на 40%, то есть составила 0,6х рублей. Во втором магазине после первого понижения цена была 0,8х рублей, а после второго - 0,75(0,8х)=0,6х. Таким образом, молоко в каждом из магазинов вновь стоит одинаково.

Ответ без обоснования 1 балл.

Решена задача для частного случая - 2балла.

Составлено уравнение, но не решено – 5 баллов

Составлено уравнение, решено, но допущена вычислите6льная ошибка – 5 баллов Полное решение 7 баллов

2. Ответ: 37037 и 74074.

Решение: Из условия х + у = 111111, х + 10у = 777777. Откуда 9у = 666666, у=74074.

Тогда х = 37037.

Ответ без обоснования 1 балл.

Найдено одно число – 4 балла

Полное решение 7 баллов



3. Ответ: 4 кубика.

Одно из возможных решений:

Пусть кубик, показанный стрелкой, имеет координаты (0; 0; 0).Найдем координаты кубиков, которые следует соединить. Левый из них будет иметь координаты ( 1; -4; 5), а правый (3; -2; 4).поэтому, чтобы соединить их потребуется кубиков. Например, это могут быть кубики (2; -4; 5), (3; -4; 5), (3; -3; 5), (3; -2; 5).

Правильный ответ без обоснования 3 балла.

В качестве обоснования достаточно найти «расстояние» между концами змейки по трем измерениям. Если расстояния по трем измерениям найдены правильно, но дальше при нахождении необходимого количества кубиков ошибка в один кубик – 4 балла.

Полное решение 7 баллов

4. Преобразуем выражение к виду при

Значит, , при условии, что .

На рисунке видно, что прямая у = кх не имеет с построенным графиком общих

точек, если она горизонтальна, либо если она проходит через одну из

удаленных точек или . Этим случаям соответствуют

значения к = 0; ;

Выполнены преобразования – 2 балла

Выполнены преобразования и построен график первой функции – 3 балла

Если не учтен случай к<0 – 5 баллов

Если не учтен случай к=0 –6 баллов

Правильное построение графика оценивается в 7 баллов.

5. Ответ: 450.

Решение:

Так как С1В1 - диаметр, то Так как ВВ1 АС, то С1В ‌‌‌‌‌| | АС.

Поэтому Углы ВС1С и ВАС равны как вписанные, опирающиеся на одну дугу. Следовательно, Пусть Н- основание высоты. Опущенной из вершины С. Прямоугольный треугольник АНС – равнобедренный, т.е.
Категория: Олимпиада | Просмотров: 371 | | Рейтинг: 0.0/0
Всего комментариев: 0
avatar