Главная » 2015 » Апрель » 15 » Контрольные работы по геометрии 7 класс 1 четверть ФГОС Школа России
13:57
Контрольные работы по геометрии 7 класс 1 четверть ФГОС Школа России
7 класс

Контрольная работа № 1.


1 вариант.

1). Три точки В, С, и D лежат на одной прямой. Известно, что ВD = 17 см, DC = 25 см. Какой может быть длина отрезка ВС ?

2). Сумма вертикальных углов МОЕ и DOC, образованных при пересечении прямых МС и DE, равна 204 0 . Найдите угол МОD .

3). С помощью транспортира начертите угол, равный 780 , и проведите биссектрису смежного с ним угла.



2 вариант.

1). Три точки М, N и К лежат на одной прямой. Известно, что MN = 15 см, NK = 18 см. Каким может быть расстояние МК ?

2). Сумма вертикальных углов АОВ и СОD, образованных при пересечении прямых АD и ВС, равна 108 0 . Найдите угол ВОD .

3). С помощью транспортира начертите угол, равный 1320 , и проведите биссектрису одного из смежных с ним углов.

Контрольная работа № 2.


1 вариант.

1). На рисунке 1 отрезки АВ и СD имеют общую середину О. Докажите, что .

С

А O



В

D

2). Луч AD – биссектриса угла А. На сторонах угла А отмечены точки В и С так, что АDВ = АDС . Докажите, что АВ = АС .

3). В равнобедренном треугольнике с периметром 48 см боковая сторона относится к основанию как 5 : 2 . Найдите стороны треугольника.



2 вариант.

1). На рисунке 1 отрезки МЕ и РК точкой D делятся пополам. Докажите, что КМD = РЕD.

М К

D

Р Е

2). На сторонах угла D отмечены точки М и К так, что DМ = DК. Точка Р лежит внутри угла D и РК = РМ . Докажите, что луч DР – биссектриса угла МDК .

3). В равнобедренном треугольнике с периметром 56 см основание относится к боковой стороне как 2 : 3 . Найдите стороны треугольника.

Контрольная работа № 3.


1 вариант.

1). Отрезки EF и PQ пересекаются в их середине М. Докажите, что РЕ // QF.

2). Отрезок DM – биссектриса треугольника CDE. Через точку М проведена прямая, параллельная стороне CD и пересекающая сторону DE в точке N. Найдите углы треугольника DMN, если .

3). На рисунке АС // ВD, точка М – середина отрезка АВ. Докажите, что М – середина отрезка CD.

D

M

A B

C



2 вариант.

1). Отрезки МN и ЕF пересекаются в их середине Р. Докажите, что ЕN // МF.

2). Отрезок AD – биссектриса треугольника АВС. Через точку D проведена прямая, параллельная стороне FD и пересекающая сторону АС в точке F. Найдите углы треугольника АDF, если .

3). На рисунке AB // DC, АВ = DC. Докажите, что точка О – середина отрезков АС и ВD.

В С



О

А D

Контрольная работа № 4.


1 вариант.

1). На рисунке: . Найдите сторону АВ треугольника АВС.

Е

B М



А

C D



F

2). В треугольнике СDE точка М лежит на стороне СЕ, причём - острый. Докажите, что DE > DM.

3). Периметр равнобедренного тупоугольного треугольника равен 45 см, а одна из его сторон больше другой на 9 см. Найдите стороны треугольника.



2 вариант.

1). На рисунке: . Найдите сторону АС треугольника АВС.

Е М



A С

В



D F

2). В треугольнике MNP точка К лежит на стороне MN, причём - острый. Докажите , что КР < МР.

3). Одна из сторон тупоугольного равнобедренного треугольника на 17 см меньше другой. Найдите стороны этого треугольника, если его периметр равен 77 см.

Контрольная работа № 5.


1 вариант.

1). В остроугольном треугольнике МNP биссектриса угла М пересекает высоту NK в точке О, причём ОК = 9 см. Найдите расстояние от точки О до прямой МN.

2). Постройте прямоугольный треугольник по гипотенузе и острому углу.

3). Один из углов прямоугольного треугольника равен 60 0, а сумма гипотенузы и меньшего катета равна 42 см. Найдите гипотенузу .



2 вариант.

1). В прямоугольном треугольнике DCE с прямым углом С проведена биссектриса EF, причём FC = 13 см. Найдите расстояние от точки F до прямой DE.

2). Постройте прямоугольный треугольник по катету и прилежащему к нему острому углу.

3). В треугольнике АВС , биссектрисы углов А и С пересекаются в точке О. Найдите угол АОС.

Итоговая контрольная работа


1 вариант.

1). В равнобедренном треугольнике АВС с основанием АС угол В равен 42 0. Найдите два других угла треугольника АВС.

2). Величины смежных углов пропорциональны числам 5 и 7. Найдите разность между этими углами.

3). В прямоугольном треугольнике АВС , , АС = 10 см , СD АВ, DE АС. Найдите АЕ.

4). В треугольнике МРК угол Р составляет 60 0 угла К, а угол М на 40 больше угла Р. Найдите угол Р.


2 вариант.

1). В равнобедренном треугольнике АВС с основанием АС сумма углов А и С равна 156 0. Найдите углы треугольника АВС.

2). Величины смежных углов пропорциональны числам 4 и 11. Найдите разность между этими углами.

3). В прямоугольном треугольнике АВС , , ВС = 18 см , СК АВ, КМ ВС. Найдите МВ.

4). В треугольнике BDE угол В составляет 30 0 угла D, а угол Е на 19 0 больше угла D. Найдите угол В.



8 класс

Контрольная работа № 1.


1 вариант.

1). Диагонали прямоугольника ABCD пересекается в точке О, ABO = 36°. Найдите AOD.

2). Найдите углы прямоугольной трапеции, если один из ее углов равен 20°.

3). Стороны параллелограмма относятся как 1 : 2, а его периметр равен 30 см. Найдите стороны параллелограмма.

4). В равнобокой трапеции сумма углов при большем основании равна 96°. Найдите углы трапеции.

5).* Высота ВМ, проведенная из вершины угла ромба ABCD образует со стороной АВ угол 30°, АМ = 4 см. Найдите длину диагонали BD ромба, если точка М лежит на стороне AD.



2 вариант.

1). Диагонали прямоугольника MNKP пересекаются в точке О,MON= 64°. Найдите ОМР. 2). Найдите углы равнобокой трапеции, если один из ее углов на 30° больше второго.

3). Стороны параллелограмма относятся как 3 : 1, а его периметр равен 40 см. Найдите стороны параллелограмма.

4). В прямоугольной трапеции разность углов при одной из боковых сторон равна 48°. Найдите углы трапеции.

5).* Высота ВМ, проведенная из вершины угла ромба ABCD образует со стороной АВ угол 30°, длина диагонали АС равна 6 см. Найдите AM, если точка М лежит на продолжении стороны AD.

Контрольная работа № 2.


1 вариант.

1). Сторона треугольника равна 5 см, а высота, проведенная к ней, в два раза больше стороны. Найдите площадь треугольника.

2). Катеты прямоугольного треугольника равны 6 и 8 см. Найдите гипотенузу и площадь треугольника.

3). Найдите площадь и периметр ромба, если его диагонали равны 8 и 10 см.

4).* В прямоугольной трапеции АВСК большая боковая сторона равна 3см, угол К равен 45°, а высота СН делит основание АК пополам. Найдите площадь трапеции.



2 вариант.

1). Сторона треугольника равна 12 см, а высота, проведенная к ней, в три раза меньше высоты. Найдите площадь треугольника.

2). Один из катетов прямоугольного треугольника равен 12 см, а гипотенуза 13 см. Найдите второй катет и гипотенузу треугольника.

3). Диагонали ромба равны 10 и 12 см. Найдите его площадь и периметр.

4).* В прямоугольной трапеции ABCD большая боковая сторона равна 8 см, угол А равен 60°, а высота ВН делит основание AD пополам. Найдите площадь трапеции.

Контрольная работа № 3.


1 вариант.

1). По рис. A = B, СО = 4, DO = 6, АО = 5.

Найти: а). ОВ; б). АС : BD; в). .

2). В треугольнике ABC сторона АВ = 4 см, ВС = 7 см, АС = 6 см, а в треугольнике MNK сторона МК = 8 см, MN =12 см, KN = 14 см. Найдите углы треугольника MNK, если A = 80°, B = 60°.

3). Прямая пересекает стороны треугольника ABC в точках М и К соответственно так, что МК || АС, ВМ : АМ = 1 : 4. Найдите периметр треугольника ВМК, если периметр треугольника ABC равен 25 см.

4). В трапеции ABCD (AD и ВС основания) диагонали пересекаются в точке О, AD = 12 см, ВС = 4 см. Найдите площадь треугольника ВОС, если площадь треугольника AOD равна 45 см2.


2 вариант.

1). По рис. РЕ || NK, MP = 8, MN = 12, ME = 6. Найти: а) . МК; б). РЕ : NК; в). .



2). В ∆ АВС АВ = 12 см, ВС = 18 см, В = 70 0, а в ∆ МNК МN = 6 см, NК = 9 см, N = 70 0. Найдите сторону АС и угол С треугольника АВС, если МК = 7 см, К = 60 0.

3). Отрезки АВ и CD пересекаются в точке О так, что ACO = BDO, АО : ОВ = 2:3. Найдите периметр треугольника АСО, если периметр треугольника BOD равен 21 см.

4). В трапеции ABCD ( AD и ВС основания) диагонали пересекаются в точке О, = 32 см2, = 8 см2. Найдите меньшее основание трапеции, если большее из них равно 10 см.

Контрольная работа № 4.


1 вариант.

1). Средние линии треугольника относятся как 2 : 2 : 4, а периметр треугольника равен 45 см. Найдите стороны треугольника.

2). Медианы треугольника ABC пересекаются в точке О. Через точку О проведена прямая, параллельная стороне АС и пересекающая стороны АВ и ВС в точках Е и F соответственно. Найдите EF, если сторона АС равна 15 см.

3). В прямоугольном треугольнике ABC (C = 90° ) АС = 5 см, ВС = 5 см. Найдите угол В и гипотенузу АВ.

4). В треугольнике ABC A =, C =, сторона ВС = 7 см, ВН – высота. Найдите АН.

5). В трапеции ABCD продолжения боковых сторон пересекаются в точке К, причем точка В — середина отрезка АК. Найдите сумму оснований трапеции, если AD = 12 см.



2 вариант.

1). Стороны треугольника относятся как 4 : 5 : 6, а периметр треугольника, образованного его средними линиями, равен 30 см. Найдите средние линии треугольника.

2). Медианы треугольника MNK пересекаются в точке О. Через точку О проведена прямая, параллельная стороне МК и пересекающая стороны MN и NK в точках А и В соответственно. Найдите МК, если длина отрезка АВ равна 12 см.

3). В прямоугольном треугольнике РКТ (T = 90° ), РТ = 7см, КТ = 1 см. Найдите угол К и гипотенузу КР.

4). В треугольнике ABC A = , C =, высота ВН равна 4 см. Найдите АС.

5). В трапеции MNKP продолжения боковых сторон пересекаются в точке Е, причем ЕК = КР. Найдите разность оснований трапеции, если NK = 7 см.

Контрольная работа № 5.



1 вариант.

1). АВ и АС - отрезки касательных, проведенных к окружности радиуса 9 см. Найдите длины отрезков АС и АО, если АВ = 12 см.

2). По рисунку АВ : BC = 11 : 12.
Найти: BCA, BAC.

3). Хорды MN и РК пересека-

ются в точке Е так, что

ME = 12 см, NE = 3 см,

РЕ = КЕ. Найдите РК.

4). Окружность с центром О и

радиусом 16 см описана около треугольника ABC так, что угол OAB равен 30°, угол OCB равен 45°. Найдите стороны АВ и ВС треугольника.



2 вариант.

1). MN и МК - отрезки касательных, проведенных к окружности радиуса 5 см. Найдите MN и МК, если МО = 13 см.

2). По рисунку AB : АС=5 : 3.
Найти: BOC, ABC.

3). Хорды АВ и CD пересека –

ются в точке F так, что

AF = 4 см, ВF = 16 см, CF = DF. Найдите CD.

4). Окружность с центром О и
радиусом 12 см описана около
треугольника MNK так, что угол MON равен 120°, угол NOK равен 90°. Найдите стороны MN и NK треугольника.
Категория: Геометрия | Просмотров: 686 | | Рейтинг: 0.0/0
Всего комментариев: 0
avatar